Exam Analysis 2013

Date : 02-12-2013
Time : 18.30-21.30
Place : Aletta Jacobshal 01
Provide clear arguments for all your answers; 'yes' or 'no' answers are not allowed. In your argumentation you may use all theorems and statements in the book. However, you should indicate which theorems/ statements you are using. The detailed grading scheme can be found below.

1. Assume that $\lim _{x \rightarrow c} f(x)=L$, where $L \neq 0$, and assume that $\lim _{x \rightarrow c} g(x)=0$. Prove that
$\lim _{x \rightarrow c} \frac{|f(x)|}{|g(x)|}=\infty$
2. Let the function $f: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable, and assume that $f^{\prime}(x) \rightarrow 0$ for $x \rightarrow \infty$. Prove that the function $g: \mathbb{R} \rightarrow \mathbb{R}$ defined by
$g(x)=f(x+1)-f(x)$
satisfies
$g(x) \rightarrow 0$ for $x \rightarrow \infty$.
3. Consider a non-empty subset $A \subset \mathbb{R}$. Assume that A is both open and closed. Prove by direct arguments that A is not bounded.
4. Consider a non-empty subset $A \subset \mathbb{R}$. Give the definition of a limit point of A. Prove that the set of limit points of A is a closed set.
5. Determine the pointwise limit of the following sequences of functions $f_{n}, n \in \mathbb{N}$, and prove or disprove their uniform convergence:
(a) $f_{n}(x)=0, x \leq n$, and $f_{n}(x)=x-n, x \geq n$, on $(0, \infty)$;
(b) $f_{n}(x)=e^{-n x^{2}}$ op $[-1,1]$;
(c) $f_{n}(x)=\frac{e^{-x^{2}}}{n}$ op $[-1,1]$.
6. (a) Prove that $g(x)=\sum_{n=1}^{\infty} \frac{\sin \left(2^{n} x\right)}{2^{n}}$ is continuous on \mathbb{R}.
(b) Prove that $h(x)=\sum_{n=1}^{\infty} \frac{x}{n^{2}}$ is continuous on \mathbb{R}. (Hint; First prove continuity on an interval $[-a, a], a>0$.)
(c) Prove that $h(x)$ defined in the previous part is differentiable on \mathbb{R}. Prove that $h^{\prime}(x)$ is a constant function.
7. Define the function $h:[0,2] \rightarrow \mathbb{R}$ as

$$
h(x)=1, \text { if } x \neq 1, \quad h(1)=0 .
$$

Argue that h is integrable.
Define $H(x)=\int_{0}^{x} h$ for each $x \in[0,2]$. Show that H is differentiable at every point of $[0,2]$. What is $H^{\prime}(x), x \in[0,2] ?$

Grading scheme:

Total 100, Free 10.

1. 15 .
2. 12 .
3. 10 .
4. 10 .
5. a: $5, \mathrm{~b}: 5, \mathrm{c}: 5$.
6. a: 5, b: 6, c: 7 .
7. 10 .
