Exam Analysis 2013

Date	:	02-12-2013
Time	:	18.30 - 21.30
Place	:	Aletta Jacobshal 01

Provide clear arguments for all your answers; 'yes' or 'no' answers are not allowed. In your argumentation you may use all theorems and statements in the book. However, you should indicate which theorems/ statements you are using.

The detailed grading scheme can be found below.

1. Assume that $\lim_{x\to c} f(x) = L$, where $L \neq 0$, and assume that $\lim_{x\to c} g(x) = 0$. Prove that

 $\lim_{x \to c} \frac{|f(x)|}{|q(x)|} = \infty$

2. Let the function $f: \mathbb{R} \to \mathbb{R}$ be differentiable, and assume that $f'(x) \to 0$ for $x \to \infty$. Prove that the function $g: \mathbb{R} \to \mathbb{R}$ defined by

$$g(x) = f(x+1) - f(x)$$

satisfies

 $g(x) \to 0$ for $x \to \infty$.

- 3. Consider a non-empty subset $A \subset \mathbb{R}$. Assume that A is both open and closed. Prove by direct arguments that A is not bounded.
- 4. Consider a non-empty subset $A \subset \mathbb{R}$. Give the definition of a limit point of A. Prove that the set of limit points of A is a closed set.
- 5. Determine the pointwise limit of the following sequences of functions $f_n, n \in \mathbb{N}$, and prove or disprove their uniform convergence:
 - (a) $f_n(x) = 0, x \le n$, and $f_n(x) = x n, x \ge n$, on $(0, \infty)$;
 - (b) $f_n(x) = e^{-nx^2}$ op [-1, 1];
 - (c) $f_n(x) = \frac{e^{-x^2}}{n}$ op [-1, 1].
- 6. (a) Prove that g(x) = ∑_{n=1}[∞] (2ⁿx)/2ⁿ is continuous on ℝ.
 (b) Prove that h(x) = ∑_{n=1}[∞] (x/n²)/2ⁿ is continuous on ℝ. (Hint; First prove continuity on an interval [-a, a], a > 0.
 - (c) Prove that h(x) defined in the previous part is differentiable on \mathbb{R} . Prove that h'(x) is a constant function.

7. Define the function $h: [0,2] \to \mathbb{R}$ as

h(x) = 1, if $x \neq 1$, h(1) = 0.

Argue that h is integrable. Define $H(x) = \int_0^x h$ for each $x \in [0, 2]$. Show that H is differentiable at every point of [0, 2]. What is $H'(x), x \in [0, 2]$?

Grading scheme:

Total 100, Free 10.

1. 15.

- $2.\ 12.$
- 3. 10.
- 4. 10.
- 5. a: 5, b: 5, c: 5.
- 6. a: 5, b: 6, c: 7.
- 7. 10.